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Abstract — An analysis is performed to study the heat- and mass-transfer characteristics of mixed convection
flow along vertical and inclined flat plates under the combined buoyancy effects of thermal and mass
diffusion. The analysis is for processes in which the diffusion-thermo and thermo-diffusion effects as well as
the interfacial velocities due to mass diffusion are negligibly small. The plate is either maintained at a uniform
temperature/concentration or subjected to a uniform heat/mass flux. Numerical results for the local Nusselt
number and the local Sherwood number are presented for diffusion of common species into air and water. In
general, it has been found that for the thermally assisting flow, the local surface heat- and mass-transfer rates
are further enhanced when the buoyancy force from mass diffusion assists the thermal buoyancy force, but
are reduced when the two buoyancy forces oppose each other. These trends are reversed for the thermally
opposing flow. In addition, the effects of the combined buoyancy forces on the surface heat- and mass-
transfer rates are found to diminish as the angle of inclination from the vertical increases. A comparison is
also made between results from the uniform surface heat/mass flux and the uniform wall temperature/
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concentration.

NOMENCLATURE

species, mass fraction or concentration;
local friction factor;

binary diffusion coefficient;

reduced stream functions;
gravitational acceleration;

thermal Grashof number,

gB(Tw— Tm)xS/vl 5
modified thermal
gBa.x*/kv?;
Grashof number for mass diffusion,
gﬂ*(cw - Cco)xa/vz >

modified Grashof number for mass dif-
fusion, gf*m,,x*/pDv?;

thermal conductivity of the fluid;
mass flux of the diffusing species;
ratio of Grashof numbers, Gr, ./Gr, ,;
ratio of modified Grashof numbers,
ork JGrE

local Nusselt number, q,,x/[(T, — T, )k];
Prandtl number, v/a;

local surface heat-transfer rate per unit
area;

Reynolds number, ux/v;

Schmidt number, v/D;

local Sherwood number,

’hwx/[pD(Cw— Cao)] s

fluid temperature;

velocity components in x and y directions;;
axial and normal coordinates.

Grashof number,

Greek symbols

a,

ﬁ’

thermal diffusivity of the fluid;
volumetric coefficient of thermal expan-
sion, [ —(8p/0T),,cl/p;
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ﬂ*’

volumetric coefficient of expansion with
mass fraction, [ —(dp/@C), r]/p;

7, angle of inclination from vertical;

é, boundary-layer thickness;

n, pseudo-similarity variable;

Nss dimensionless boundary-layer thickness;

0, dimensionless temperature;

2, dimensionless mass fraction;

s dynamic viscosity of the fluid;

v, kinematic viscosity of the fluid;

¢, thermal buoyancy force parameter,
|Gr,,|cos y/ReZ;

P, density of the fluid;

1, shear stress;

D, modified dimensionless temperature;

1 modified thermal buoyancy parameter,
|Gr# Jcos y/Re3?;

v, stream function;

w, modified dimensionless mass fraction.

Subscripts
w, condition at the wall;
0, condition at the free stream.

INTRODUCTION

THERMAL buoyancy effects on forced convective heat
transfer over a surface may become important when
the flow velocity is relatively small and the tempera-
ture difference between the surface and the ambient
fluid is large. The thermal buoyancy force effects on
heat-transfer characteristics of forced convection has
been studied extensively for various flow configu-
rations, particularly for forced flow along vertical and
horizontal surfaces. An account of the studies for these
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two flow configurations can be found, for example, in
the references cited in two recent studies on the subject
[1,2]. In general, it has been found that the buoyancy
force increases the rate of surface heat transfer when it
assists the forced flow and decreases the heat-transfer
rate when it opposes the forced flow. Very recently,
Mucoglu and Chen [3] have studied the thermal
buoyancy force effects on forced convection flow along
inclined surfaces. They found that the effects of buoy-
ancy forces on the wall shear and surface heat-transfer
rate diminish as the angle of inclination from the
vertical increases, for both assisting and opposing
flows.

There are many transport processes in industry and

in the environment in which buoyancy forces arise

from both thermal and mass diffusion as a result of the
co-existence of temperature gradients and concen-
tration differences of dissimilar chemical species. The
problems of combined buoyancy modes of thermal
and mass diffusion have been studied rather exten-
sively for laminar free convection flow along vertical
and horizontal plates (see, for example [4, 5] and the
references cited therein). The analysis, in general, has
been based on mass diffusion processes for which very
low concentration level exists, such that the diffusion-
thermo and thermo-diffusion effects, along with the
interfacial velocities from mass diffusion at the surface,
are neglected. In their analysis on free convection flows
for vertical and horizontal plates, Gebhart and Pera
[4,5] used Boussinesq approximations and presented
results for air and water for Schmidt numbers of
practical interest.

A survey of literature reveals that the combined
effects of buoyancy forces from thermal and mass
diffusion on forced convective heat and mass transfer
have not been studied. Many such problems exist in
engineering and environmental processes. This has
motivated the present investigation. In the study,
attention is directed to forced convection along verti-
cal and inclined plates for which the plate is either
maintained at a uniform temperature and concen-
tration or subjected to a uniform surface heat and mass
flux. Solutions of the transformed conservation equa-
tions are obtained by both local nonsimilarity and
finite difference methods. Numerical results are pre-
sented for Prandtl numbers of 0.7 and 7 over Schmidt
numbers ranging from 0.2 to 10 and from 7 to 500,
respectively. These results cover a range of diffusion
species of interest, respectively, for air and water.

ANALYSIS

Consider a flat plate that is inclined from the vertical
with an accute angle 7, along which a forced flow
moves parallel to the plate with free stream velocity u.,,
temperature T, and concentration C,,. The forced
flow is above the plate when y >0 in the clockwise
direction and below the plate when y < 0. The plate is
either maintained at a uniform temperature T,, and
uniform concentration C,, or subjected to a uniform
surface heat flux q,, and uniform surface mass flux m,,.
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The streamwise coordinate x is measured from the
leading edge of the plate and the transverse coordinate
y'is measured normal to the plate in the outward
direction, for flows both above and below the plate.

By imposing the assumptions of negligible diffusion-
thermo and thermo-diffusion effects, along with the
Boussinesq approximations, one can write the con-
servation equations of the laminar boundary layer as

(6]

— 4o =0 (0

R
+ gf*siny ‘. ({C—~C.,)dy
ax ),

tgBcosyT—T,)

2

C“u
+ gB*cosy(C—C,) + vy (2)
(3}:
éT ¢T T )
U+ 0 = o (3)
cx cy [£h i
aC oC e
e =pl ()
0x dy cy*

where the conventional notations are defined in the
Nomenclature. The first two terms on the RHS of
equation (2) represent the streamwise pressure gra-
dients induced by the combined buoyancy forces, with
the plus and minus signs pertaining, respectively, to
flows above and below the plate. The third and fourth
terms denote the buoyancy forces that arise from
thermal and mass diffusion, with the plus and minus
signs referring, respectively, to upward and downward
forced flows. Equations (1)-(4) are subjected to the
following boundary conditions:

u=0, v=r¢, at v=0
T=T, and C=C, or g,= —kéT/ly
and m, = —pDJCicy at y =0 (5)
u—u, T->T, C->0C, asy-w
u=u, T=T, C=C, atx=0

Equation (2) shows that both the buoyancy-induced
streamwise pressure gradient terms and the buoyancy
force terms exist for an inclined surface. The relative
magnitude of these terms, however, depends on the
angle of inclination, y. As demonstrated in the appen-
dix of [6], an order of magnitude analysis will lead to
the result that the buoyancy-induced streamwise pres-
sure gradient terms can be neglected in comparison
with the buoyancy force terms if the condition

13
—tany < 1 {6)
X

is fulfilled. In terms of the dimensionless boundary-
layer thickness #, (the  value for which y = &), this
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condition is equivalent to
()

Since 1, is about 10 and since the local Reynolds
number, Re, = u,,x/v, may range from 10° to 10%, the
values of Rel?/n, will lie between 3 and 30; that is,
tany « 3 ~ 30. Thus, condition (6) or (7) will be valid
for angles of inclination y « 72° ~ 88° when the
buoyancy-induced streamwise pressure gradient terms
are neglected from equation (2). Within the framework
of this approximation, the momentum equation (2)
can be simplified to

tany « Rel*/n;.

a 5
u—u + v = +gBcosy{(T—T,)
ox dy
2

O%u
+gf*cosC-C)+v—

o ®

The conservation equations for the problem under
study can then be described by equations (1), (3)—(5),
(8), subject to the condition given by equation (6) or
(7). It is noted here that for y = 0°, equation (8) with
cosy =1 represents exactly the complete x-
momentum equation for a vertical plate without any
approximations. This can also be seen from equation
(2) by putting y =0° To obtain solutions of the
governing system of equations, these equations are
first transformed into a dimensionless form, as de-
scribed in the following.

Uniform wall temperature/concentration (UWIJUWC )
case

Let the pseudo-similarity variable # and the x-
dependent dimensionless coordinate £(x) that repre-
sents the thermal buoyancy effect be

= yue/vx)'?2, & =¢x) ©®

and introduce the reduced stream function f(&,»), the
dimensionless temperature #(¢,#), and the concen-
tration ratio A(&,n) as

FEm) = (%, y)/(uex)'? (10)
0En) = (T—THT,~Ty),
AHEM = (C—C)/(C,,—Cy) (11)

where the stream function ¥(x, y) satisfies the mass
conservation equation (1) with

u=2ady/dy, v= —y/0x. (12)

Next, by introducing equations (9)-(12) into equa-
tions (8) and (3)-(5), one arrives at the following
system of equations

S AT O+ NI = U O 01 a1ee) (1)
0”
B LV = S d0pRE-0 a0 (14)
ST = oMeE-R a0 (1)
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fE0=0 f(0=0
8(¢,0) = A(£,0) =1
fGow)=1, 6 0)=4x)=0

where the primes stand for partial derivatives with
respect to n, Pr is the Prandtl number, Sc is the
Schmidt number, the thermal buoyancy force para-
meter £(x) is given by

¢ = |Gry,|cos y/Re? {17
N = p*C,—C)/B(T,,— Ty) = Gr, /Gry, (18)

(16)

and

with

er,r = gﬁ(Tw— Too)xa/vza
(19)
er,c = gﬁ*(cw— Cco)xs/vz

denoting the local Grashof numbers for thermal and
mass diffusion, respectively.

The quantity £ is a measure of the thermal buoyancy
force effect on forced convection and N is a measure of
the relative effects between buoyancy forces that arise
from mass diffusion and thermal diffusion. Since ¢
denotes magnitude, it is noted that the plus and minus
signs appearing on the LHS of equation (13) pertain to
thermal buoyancy force assisting the forced flow
(Gr,,cosy/Re2>0) and opposing the forced flow
(Gr,.,cosy/Re? <0), respectively. The buoyancy force
due to concentration difference assists the thermal
buoyancy force, i.e. the two buoyancy forces act in the
same direction, when N >0. On the other hand, they
act in the opposite directions when N <0. The situ-
ation in which there is no buoyancy force effect from
mass diffusion corresponds to N=0.

It must be mentioned that in writing the condition
f(£,0)=0 in equation (16), the normal velocity at the
wall v,, associated with the mass diffusion process has
been neglected. This results from the assumption of a
very low concentration level in the diffusion process.
The condition for the neglect of v,, can be found as

20
v

Re 17 «1 20)

or

2 (CumCIL-FO] « 1 1)
Sc
when use is made of Fick’s law.

Some of the physical quantities of interest include
the local friction factor C +> the local Nusselt number
Nu,, and the local Sherwood number Sh.. They are
defined, respectively, by

Tw G X
= N . = -
Ay ST T k
' 22)
Sh,, = i —)-c~
Co—C, pD

By employing the definitions of wall shear stress
Ty = u(0u/0y),-o, along with Fourier’s law gq, =
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~k(@T/dy),-o and Fick’s law m, = —pD(3C/dy), o,
it can be shown that
C/Rel? = 2f"(£,0)
NuRe; ' = —0/(,0),
ShyRe; ' = — }(£,0).

(23)

(24)

Uniform surface heat/mass flux (UHF/UMF ) case
The nonsimilarity variables for this case are

1/2
’

x = x(x) (25)

and the dimensionless stream function, temperature,
and concentration are defined by

F(um) = y(x, y)(vuex)'?
®(x,n) = (T — T )Re;*/(qux/k),
o(x,n) = (C = Cq)Re;/(m,,x/pD)

Substituting equations (25-(27) into equations (8)
and (3)-(5), one obtains

F" + iFF" + 1@ + N*w)

N = y(u,/vx)

(26)

@n

= $x(F' OF [0y — F" 0F [0y) (28)
®//
— +4Fd - LF'®
Pr
= 3x(F 0®/dy — ¥ OF /dy) (29)
wl(
ot iFo —iFo
= $Y(F' 0w/0x — ' OF/0y) (30
F(x,00=0, F(x0)=0,
@'(x,0) = '(x,0) = —1 (31)

F’(X, C[/) =1, (D(X’ OO) = w(Xa w) =0

where the thermal buoyancy parameter y has the
expression
x = |Gr¥ |cos y/Re3? (32)
and the quantity
N* = (m, f*/pD)/(q.B/k) = Gri./Grs.,

measures the relative effect of buoyancy forces between
mass and thermal diffusion. The modified local Gra-
shof numbers for thermal and mass diffusion are given,
respectively, by

(33)

Gr¥, = gBg.x*/kv®

Gr*, = gf*m,x*/pDv>. 34
The plus and minus signs appearing in front of x on the
LHS of equation (28) refer, respectively, to thermal
buoyancy assisting (Gr¥, cos y/Re3? > 0) and oppos-
ing (Gr¥,cos y/Re3”? < 0) the forced flow. There is no
buoyancy effect from mass diffusion when N* = 0.
Both thermal buoyancy force and buoyancy force due
to concentration difference act in the same direction
when N* > 0, whereas they act in the opposite direc-
tions when N* < 0.
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As in the case of uniform wall temperature ana
uniform wall concentration, the interfacial velocity at
the wall, v,,, due to mass diffusion process has been
neglected in arriving at the condition F(x,0) =0 in
equation (31). This approximation is valid when the
condition

wa - w o
2T-Rex“2<<1 ¢ 1 (35)

is fulfilled.

The local friction factor, the local Nusselt number,
and the local Sherwood number as defined by equation
(22) now have the expressions

C Rey> = 2F"(3,0)
Nu,Re;'? = 1/®(y.0),
SheRe; ' = 1jw(y.0).

(36)

(37)

Comparisons between UWT/UWC and UHF/UMF
cases

A direct comparison of the local Nusselt numbers
between the uniform wall temperature/concentration
(UWT/UWC) case and the uniform surface heat/mass
flux (UHF/UMF) case is of practical interest. This will
be done later when the numerical results are presented.
To facilitate such a comparison, it is necessary to
define an equivalent thermal buoyancy force para-
meter ¢, for the UHF case in terms of the local wall
temperature T,(x) such that

£e = [(Gry.e|cos y/Reg (38)
where
(Grye = gBLTu(x) = T J*/? (39)
and
T\(x) = Ty = (qux/k)Re; ' *®(y,0) (40)

from the ® expression in equation (27). Substituting
equation (40) into equation (38) and making use of
equation (32), one obtains

e = x®(x, 0).

For & = y®(x,0), one can find the Nusseit number
ratio between the UHF and UWT cases by employing
the Nu, expressions in equations (24) and (37) as

(Nu)yur/(NuJywr = — 1/[(1)()(»0)9’(5,0)]- (42)

Similarly, one can determine the Sherwood number
ratio by defining an equivalent buoyancy force para-
meter due to mass diffusion for the uniform surface
mass flux (UMF) case in terms of the local wall mass
concentration C,(x) as

(41)

Eee = [(Gry o)e|cos 7/Re; = N¢, (43)
where
(Gry0)e = gB*[Culx) — Coo Jx*V? (44)
and
Cu(x) — Co = ni,(x/pD)Re; ' *ax(x, 0) {45)
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from equation (27). Substitution of equation (45) into
equation (43) along with the use of equation (32)
results in

e = N*yo(x,0) (46)

For & = N*yw(x,0), one finds from the Sh, ex-
pressions in equations (24) and (37) that

(Sho)ome/(ShJuwe = —1/[0(x,04(¢,0)].  (47)

Since ®(x,0) and w(y,0) depend on N*, and since §’
(£,0) and A'(£,0) depend on N, a relationship between
N* and N needs to be determined before the (Nu, )yur/
(Nu,)ywr ratio or the (Sh )ymr/(She)uwc ratio can be
evaluated. This relationship can be determined from
equations (41), (43), and (46) as

N*/N = ®(x,0)/w(x,0) (48)

when ¢ = £,. In addition, it can be seen that equation
(46) reduces to equation (41). When Sc = Pr, one can
observe from equations (29) and (30) that ®(y,0) = w
(x,0). This leads to N* = N from equation (48). In the
same manner, a comparison between equations (14)
and (15) shows that 1'(£,0) = 6'(£,0) when Sc = Pr. It
can therefore be concluded that the (Sh,)yme/(Sh)uwe
ratio is exactly identical to the (Nuy)yur/(Nt)uwr
ratio when Sc = Pr and hence N* = N under the
equivalent buoyancy force parameter ¢ = £,.

NUMERICAL SOLUTIONS

Equations (13)—(15) for the uniform wall
temperature/concentration (UWT/UWC) case and
(28)—(30) for the uniform surface heat/mass flux
(UHF/UMF) case are partial differential equations
that are coupled, respectively, through the functions £,
0, A and F, ®, w for the respective parametric values of
N, Pr, Sc,and N*, Pr, Sc. In the present investigation,
these equations subject to their respective boundary
conditions, equations (16) and (31), were solved either
by the local nonsimilarity method (see, for example,
[2,3,7]) or by a finite-difference method similar to, but
modified from that given in [8]. The former method
was used in the UWT/UWC case for Pr = 0.7 and the
latter method in the UWT/UWC case for Pr = 7 and
in the UHF/UMF case for both Pr = 0.7 and 7. In the
local nonsimilarity method, the solutions were trun-
cated at the second level, because it has been estab-
lished from previous studies that this level provides
results that are very accurate for all practical purposes.
In the present study, the resulting equations were
solved by the Runge—Kutta integration scheme, along
with the Newton—-Raphson shooting method to refine
the initial values at # = O until the conditions at the
edge of the boundary layers (ie. at 5 =#n;) were
satisfied simultaneously within a tolerance of 10~ or
smaller. In the computations, the maximum #; values
ranged from 8 to 15 as the Schmidt number decreased
from 10 to 0.2. The step size An was varied from 0.02 for
0 <75 <4to 0.04 for n > 4, which was found to be
adequate for providing accurate numerical results.

For the case of Pr = 7 (i.e. diffusion of species into

water), the Schmidt numbers of practical interest lie
about 500 and the mass-fraction boundary-layer
thickness is very small (; < 1) as compared to the flow
and thermal boundary-layer thicknesses. Because of
the high Schmidt numbers involved, the numerical
integration solution becomes difficult to obtain and
time consuming. It was then decided to solve the
system of equations (13)}-(16) for the case of UWT/
UWC with Pr = 7 and the system of equations (28)—
(30) for the case of UHF/UMF with Pr = 0.7 and 7 by
a finite-difference method. This solution procedure is
well documented and can be found, for example, in [8].
In this method, an #; value of 10 was found to be
sufficient for all Schmidt numbers ranging from 7 to
500 and a step size of 0.02 was sufficient for Sc = 7.
However, the step size for S¢c = 100 and 500 had to be
varied from 0.005 for 0 <7 < 1t00.020for1 <n <5
to 0.040 for 5 < n < 10 for the UWT/UWC case and
varied from 0.002 for 0<# <05 to 002 for
0.5 <1 <51t00.04for 5 < n < 10 for the UHF/UMF
case. This is because a very small step size is required
inside the mass-fraction boundary layer (n < 1) in
order to provide accurate numerical results. On the
other hand, a step size of A¢ = 0.25 or Ay = 0.2 was
found to be adequate for the £ or y variable.

In the computations for the UWT/UWC case, the
values of Gr, , cos y/ReZ ranged from —0.5 to 2.0 and
the N values from — 1.0 to 2.0 for both Pr = 0.7 and 7.
For the UHF/UMF case, the values of Gr¥, cosy/
Re3” ranged from —0.5 to 2 and the N* values ranged
from —1.0 to 2.0. The Schmidt number range for
Pr = 0.7 covers diffusion of gases or vapors into air,
such as hydrogen (Sc = 0.22), water vapor (0.60),
ammonia (0.78), carbon dioxide (0.94), methanol
(0.97), ethyl alcohol (1.30), benzene (1.76), ethyl ben-
zene (2.01), and naphthalene (2.57). The Schmidt
number of 500 for Pr = 7 covers closely the diffusion
into water of ammonia (Sc = 455), carbon dioxide
(453), nitrogen (468), sulfur dioxide (523), methanol
(556), sodium chloride (580), and chlorine (617).

RESULTS AND DISCUSSION

The variations of the local Nusselt number Nu, and
the local Sherwood number Sh, with the thermal
buoyancy force parameter Gr, ,cos y/ReZ for the uni-
form wall temperature/concentration (UWT/UWC)
case are shown, respectively, in Figs. 1 and 2 for
Pr = 0.7, with values of N ranging from —1.0 to 2.0
and Schmidt numbers from 0.2 to 10. The correspond-
ing results for Pr = 7 are shown, respectively, in Figs. 3
and 4 with N values from — 1.0 to 2.0 and Schmidt
numbers of 7, 100 and 500. Similar graphs for the
uniform surface heat/mass flux (UHF/UMF) case are
plotted against the thermal buoyancy force parameter
Gr*,cos y/Re3?, respectively, in Figs. 5 and 6 for
Pr = 0.7, with N* values from — 1.0 to 2.0 and Schmidt
numbers from 0.6 to 1.0, and in Figs. 7and 8 for Pr = 7,
with N* values of — 1.0 to 2.0 and Sc values of 7, 100
and 500. These figures for Pr = 0.7 then show the
results for diffusion of some typical gases or vapors into
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F1G. 1. Local Nusselt number results for uniform wall

temperature/concentration, Pr = 0.7.

flwds with Pr=0.7 (such as air) and those for Pr=7
illustrate the results for diffusion of some typical
species into fluids with Pr = 7 (such as water). To
conserve space, the results for the local friction factor
are not illustrated. As mentioned earlier, the results for

e [

UWT/UWC / 1

FIG. 2. Local Sherwood number results for uniform wall
temperature/concentration, Pr = 0.7.
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F1G. 3. Local Nusselt number results for uniform wall
temperature/concentration, Pr = 7.

the UWT/UWC case with Pr = 0.7 were obtained
from solutions by the local nonsimilarity method,
whereas those for the UWT/UWC case with Pr =7
and the UHF/UMF case with Pr = 0.7 and 7 were
from the finite-difference method of solution. For the
UWT/UWC case with Pr = 0.7, the results from the
finite-difference solution for N = 0 are also shown in
Fig. 1 for comparisons with those from the local

5{’“"‘”4*.'”»*“‘7\” [ E ’T o

{
i

-_ L
-05 0 05 1.0 15 20
er,, cosy/Re,

Fi1G. 4. Local Sherwood number results for uniform wall
temperature/concentration, Pr = 7.
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F1G. 5. Local Nusselt number results for uniform surface
heat/mass flux, Pr = 0.7.

nonsimilarity solution. A close agreement between the
two sets of results serves to verify the accuracy of the
local nonsimilarity method of solution.

To explain the Nu, and Sh, results shown in Figs.
1-4 for the UWT/UWC case and in Figs. 5-8 for the
UHF/UMF case, attention is first directed to the
curves for N = 0 and N* = 0; that is, to the curves for
the case in which the buoyancy force arises solely from
the temperature differences in the fluid and there exists
no buoyancy force effect from concentration differ-
ences. It is seen from these figures that for N = 0 (or

0.9 1 ! T T T
N UHF/UMF
2

08

03 4

02 L s . )
-05 o] 05 1.0 15 20

* 5/2
er" cosy/Re,

F1G. 6. Local Sherwood number results for uniform surface
heat/mass flux, Pr = 0.7.
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5/2

*
er" cosy/Re,

F1G. 7. Local Nusselt number results for uniform surface
heat/mass flux, Pr = 7.

N* =0) the local Nusselt number and the local
Sherwood number increase with increasing thermal
buoyancy force intensity for assisting flow (Gr, , cos y/
Re2 >0 or Gr*,cosy/Re3? > 0) and decrease with

T T T T T
5- 1
4 4
N 3 e
N e
I-&:’x =
< ]
]
2r- 4
[ 3
o i i L 1
-05 (0] 05 1.0 15 20

* 5/2
er"cos)'/Rex

FIG. 8. Local Sherwood number results for uniform surface
heat/mass flux, Pr = 7.
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increasing thermal buoyancy force intensity for oppos-
ing flow (Gr, ,cos y/Re? < 0 or Gr¥*, cos y/Re3 < 0).
When N > 0 (or N* > 0), that is, when the buoyancy
force from mass diffusion acts in the same direction as
the thermal buoyancy force, these quantities are
further enhanced or reduced as compared to their
respective values for N = 0 (or N* = 0), depending on
whether the thermal buoyancy force assists or opposes
the forced flow. These trends are reversed when N < 0
(or N* < 0), that is, when the buoyancy force from
mass diffusion acts in the opposite direction to the
thermal buoyancy force. In addition, it is seen that for
N > O(or N* > 0), the surface heat- and mass-transfer
rates increase and decrease with increasing thermal
buoyancy force, respectively, for thermally assisting
and opposing flows. However, for N = —1.0 (or
N* = —1.0), while the same trends are seen to prevail
when Sc > Pr, they are reversed when Sc < Pr. This
bahavior is due to the net buoyancy force effect from
thermal and mass diffusion and needs further
explanation.

From Figs. 1-4 one can see that the local Nusselt
and Sherwood numbers are independent of Gr, , cos y/
ReZwhen N = —1.0and Sc = Pr. These quantities are
also independent of Gr*, cos y/Re;? when N* = — 1.0
and Sc¢ = Pr (see Figs. 5-8). This is because the 6 and A
or ® and o solutions are identical when Sc = Pr [see
equations (14) and (15) or (29) and (30)] and, in
addition, with N = —1.0 the term +¢(6 + NA) in
equation (13) or with N* = —1 the term +x(® +
N*w)in equation (28) becomes zero, signifying that the
combined net buoyancy force effect from thermaal and
mass diffusion is zero, that is, the two buoyancy forces
are of the same intensity but are exactly opposite in
their directions of action. The resulting situation is
exactly identical to that for pure forced convection.
When Sc < Pr and N = —1.0 in the uniform wall
temperature/concentration case, such as S¢ = 0.6,
Pr=0.7,and N = —1.0in Figs. 1 and 2, the values of
Nu, and Sh, decrease with increasing values of
Gr, cos y/ReZ > 0 and increase with increasing value
of Gr,,cosy/Re: <0, because the term (8§ + N4)
becomes negative. In fact, these trends will exist for any
combination of N < 0, Sc, and Pr as long as (6 + NA)
remains negative. This same behavior is also true for
the uniform surface heat/mass flux case when S¢ < Pr
and N* = —1.0.

The behaviors of Nu, and Sh, with the changes in N
and Gr, , cos 7/Re2 (or N* and Gr¥, cos 7/Re3?) are in
conformity with the physical situations, as is to be
expected. For both N > 0and N < 0 (or N* > 0 and
N* < 0), larger departures of the Nu, values from
those of N = 0 (or N* = 0) are associated with smaller
values of the Schmidt number, for both positive and
negative values of Gr,, cos 7/ ReZ (or Gr¥, cos 7/Rel?).
The reason for this is that a diffusing species with a
smaller Schmidt number has a larger binary diffusion
coefficient which will then exert a larger effect on the
flow and thermal fields. On the other hand, larger
values of Sherwood number are associated with larger
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values of the Schmidt numbers. This is because an
increase in the Schmidt number implies a decrease in
the binary diffusion coefficient for a given fluid and a
decrease in the concentration boundary-layer thick-
ness relative to the flow boundary-layer thickness. For
Sc > 1, the concentration boundary-layer thickness
becomes smaller than the flow boundary-layer thick-
ness, thus resulting in a larger mass fraction gradient at
the wall. As the Schmidt number increases further, the
mass fraction gradient at the wall (see Fig. 11) and
hence the Sherwood number increases accordingly.
Although not illustrated, it is stated here that the
behavior of the local friction factor results parallels
that of the local Nusselt number results.

The Nu, and Sh, results presented in Figs. 18
reduce to those for a vertical plate when the angle of
inclination from the vertical 7 1s zero. SINCe G;netined piate/
Crerticalplate = Xinclined plate/ Zvertical plaie = COS 7, 1t can be
seen that the thermal buoyancy force effects on Nu,
and Sh, diminish as y increases. Thus, to induce the
same effect on the Nu, and Sh,atagivenangley > Uas
at vy =0, it is necessary to increase the thermal
buoyancy force intensity Gr, ,/ReZ or Gr*,/Rel? by a
factor of 1/cosy.

Representative velocity, temperature, and mass-
fraction profiles are illustrated only for the uniform
wall temperature/concentration case with Pr = 0.7,
respectively, in Figs. 9-11. To preserve the clarity of
the figures, curves are shown only for Gr, cosy/
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f!///\\\\ . \@:
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F1G. 9. Representative velocity profiles for uniform wall
temperature/concentration, Pr = 0.7.
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FiG. 10. Representative temperature profiles for uniform wall temperature/concentration, Pr = 0.7.

Re2=0,2 and N= —1.0, 0, 2.0 for several typical
Schmidt numbers. The curves for Gr, ,cosy/Re2 =0
correspond to pure forced convection, so are the
curves for N = — 1.0 with Sc¢ = Pr, as was explained in
the discussion of the Nu, and Sh, results. The velocity
profiles (Fig. 9) show that if the combined effects of
Gr,,cosy/Re? and N result in a net buoyancy force
that assists the forced flow, the velocity gradient at the
wall increases beyond that for pure forced convection.
This net effect is seen to increase with increasing value
of N for a given Schmidt number and with decreasing
Schmidt number for a given N value, particularly when
N is large and Sc is small, as evidenced from an
accompanying rapid increase in the velocity near the
wall and an overshooting of the velocity beyond its free
stream value inside the flow boundary layer. On the
other hand, when the net effect of thermal and
concentration buoyancy forces contributes to an op-
posing flow, both the velocity and the velocity gradient

at the wall are reduced as compared to those for pure
forced convection (see the curve for Sc = 0.6,
Gr,.cosy/Re? =2, N= —1.0in Fig. 9).

With respect to the temperature profiles (Fig. 10),
the temperature gradient at the wall is seen to increase
as N increases or as Sc decreases when the net
buoyancy force effect of thermal and mass diffusion
results in an assisting flow. The opposite trend is
observed when the net buoyancy force effect gives rise
to an opposing flow (see the curve for Sc = 0.6,
N = -1.0, and Gr, ,cos y/Re? = 2 in Fig. 10). Thus,
the effects of Gr, , cos y/ReZ, N, and Sc on the thermal
field are similar to those on the flow field. Although not
shown, it is noted here that fluids with Pr = 7 provide,
under the same values of N, Sc, and Gr,,cos y/Re2,
larger temperature gradients at the wall than fluids
with Pr = 0.7. The mass-fraction profiles (Fig. 11)
exhibit trends that are somewhat different from those
of the velocity and temperature profiles. While the
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FiG. 11. Representative mass fraction profiles for uniform wall temperature/concentration, Pr = 0.7.
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concentration gradient at the wall is seen to increase
with increasing value of N when the net buoyancy
force effect is to assist the forced flow, a larger increase
is accompanied by a larger Schmidt number. This
behavior, similar to the effect of Prandtl number on the
temperature profiles, was explained when the Sher-
wood number results were discussed.

Finally, the local Nusselt numbers between the
UHF/UMF case and the UWT/UWC case are com-
pared in Fig. 12, in which the (Nu,)oup/(Nu,Juwy ratio
is plotted against the equivalent buoyancy force
parameter (Gr, ), cos y/ReZ. Curves are shown only
for the cases of Sc = Pr and N* = N. It can be seen
from the figure that for an equivalent thermal buoy-
ancy force parameter as defined by equation (41), the
Nusselt number ratio is larger than one: that is, the
Nusselt numbers for the uniform surface heat/mass flux
case are larger than those for the uniform wall
temperature/concentration case. In addition, it is seen
that the Nusselt number ratio for Pr = S¢ = 0.7 is
larger than that for Pr = Se = 7, and that this ratio
decreases with an increasing value of N for a given
buoyancy force intensity. Furthermore, the (Nu,)ynr
(Nu,)ywr ratios decrease as (Gr, ), cos y/Re? increases
and become essentially constant for large values of
{Gry ). cos y/Re2. Forthecase of N = N* = —1.0and
Pr = Sc, the Nusselt number ratios do not depend on
(Gry.)o cos y/ReZ because of the zero net buoyancy
force under these conditions. The curves in Fig. 12 are
also applicable exactly as the Sherwood number ratio,

18 T ' i T -
i Pr,Sc 1

(N e/ INU Duwr

1.0 I d
-05 0 05

:

|
10 15 20
G 2
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FiG. 12. The Nusselt number ratio (Nu, Juur/ANUJuwr and

the Sherwood number ratio {Sh yymr/(Shdume for Sc = Pr
and N* = N.
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(Shy)ume/(Shuwe, because they are for Se = Pr and
N* = Nunder ¢ = ¢,,as was explained in the Analysis
section.

CONCLUSIONS

From the present study of mixed convection on
vertical and inclined plates with combined buoyancy
force effects of thermal and mass diffusion, it has been
found in general that for both uniform wall
temperature/concentration and uniform surface heat/
mass flux cases, the local friction factor, the local
Nusselt number, and the local Sherwood number
increase when the net effect of the combined buoyancy
forces assists the forced flow and decrease when the net
effect opposes the forced flow. The combined buoy-
ancy force effects on these three quantities are en-
hanced when the buoyancy force from mass diffusion
assists the thermal buoyancy force and are reduced
when they oppose each other. In addition, a smaller
Schmidt number is found to exert a larger effect on the
friction factor and the Nusselt number, whereas a larger
Schmidt number is responsible for a larger effect on the
Sherwood number. The buoyancy force effect dimin-
ishes as the angle of inclination from the vertical
increases. In addition, combined heat and mass trans-
fer under uniform surface heat/mass flux provides
larger local Nusselt and Sherwood numbers than the
combined transfer under uniform wall temperature/
concentration.
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TRANSFERT DE CHALEUR ET DE MASSE EN CONVECTION
MIXTE LE LONG DE PLAQUES VERTICALES OU INCLINEES

Résumé — On étudie les caractéristiques du transfert de chaleur et de masse en convection mixte le long de
plaques planes verticales ou inclinées, sous I'influence des diffusions de chaleur et de masse. On suppose que la
thermodiffusion ainsi que les vitesses interfaciales sont négligeables. La plaque est maintenue soit a
température ou concentration uniforme soit encore  flux massique ou thermique uniforme. On présente des
résultats numériques pour le nombre de Nusselt local et le nombre de Sherwood local pour la diffusion
d’espéces courantes dans I'air et I'ean. On trouve que les flux surfacicues locaux sont augmentés lorsque les
forces dues 4 la diffusion massique assistent celles dues 4 la diffusior thermique, mais sont réduits quand ces
forces s'opposent. De plus, les effets combinés des forces sur les flux surfaciques de masse et de chaleur
diminuent lorsque I'angle d’inclinaison par rapport 4 la verticale augmentent. On fait une comparaison entre
les résultats relatifs au flux uniforme de chaleur ou de masse et ceux relatifs ;i Ia température ou concentration
uniforme.

GLEICHZEITIGER WARME- UND STOFFUBERGANG BEI
GEMISCHTER KONVEKTION LANGS VERTIKALER UND GENEIGTER
PLATTEN

Zusammenfassung—Eine Analyse wird durchgefiihrt, um die Eigenschaften des Wirme- und Stoffiibergangs
von gemischter Konvektionsstrdmung entlang vertikaler und geneigter ebener Platten unter den gleichzeiti-
gen Einfliissen der Auftriebskrifte von Wirmeleitung und Diffusion zu untersuchen. Die Analyse gilt fiir
Prozesse, bei denen sowohl die Diffusionsthermo- und Thermodiffusionseffekte als auch die Grenzflichenge-
schwindigkeiten infolge der Stoffdiffusion vernachlidssigbar klein sind. Die Platte wird entweder auf
gleichméBiger Temperatur bzw. Konzentration gehalten oder einer gleichmiBigen Wirme- bzw. Massen-
stromdichte unterworfen. ZahlenméBige Ergebnisse fiir die 6rtliche Nusselt-Zahl und die ortliche Sherwood-
Zahl werden fiir die Diffusion bekannter Stoffe in Luft und Wasser angegeben. Ganz allgemein wurde
gefunden, dafl bei thermisch unterstiitzter Stromung die 6rtlichen Wirme- und Stoffiibergangswerte an der
Wand weiter vergrofert werden, wenn die Auftriebskraft infolge von Stoffdiffusion die thermische
Auftriebskraft verstirkt, jedoch reduziert werden, wenn die Auftriebskrifte entgegengerichtet sind. Diese
Trends werden bei thermisch behinderter Stromung umgekehrt. AuBerdem wurde festgestelit, daB sich die
Wirkungen der kombinierten Auftriebskrifte auf die Wirme- bzw. Stoffiibergangswerte an der Oberfliche
mit zunehmendem Neigungswinkel, bezogen auf die der Vertikalen, vermindern. Es werden auch die
Ergebnisse fiir gleichfSrmige Warme- bzw. Massenstromdichte an der Oberfliche mit denen fiir gleichmis-
ige Temperatur bzw. Konzentration verglichen.

COBMECTHBIX TEIJIO- U MACCONEPEHOC NMPH CMEWAHHOMH KOHBEKIIHU HA
BEPTHKAJIBHBIX HAKJIOHHBIX NJIACTHHAX

Annorauns — [1poBe/ieH aHan3 TEMNIO- H MacCOOOMEHHBIX XAPAKTEPUCTHK KOHBEKTHBHOTO TEUEHHS
BIOJIL BEPTHKANBHBIX H HAKMOHHBIX NUIOCKHX NJIACTHH [OPH COBMECTHOM JEHCTBHMM MONBEMHBIX CHI,
obycnossienHbix AnQiy3uell Tenna ¥ Macchi. AHANM3 BRITONHEH JUin TOPOUECCOB, B KOTOPHIX AHQ-
(y3HoHHbIH TepMOIPHEXT U TEPMOHGPYIHOHHDII a¢ipexT, a TaKke BeJTUYMHA CKOPOCTH HA IIACTHHE,
obycnopaeunas augpysueii Maccel, npeneGpexumo Mael IliacTuEa wim HaxoouTes NpH OAHOpOaHO#H
TEMNEPATYPE - KOBICH TPl HiIH HO/ABEPXKEHA NeHCTBHIO OAHOPOIHOIO TENNOBOrO—MACCOBOTO IOTOKA.
Ana nadgysum obLIMHEIX BEECTB B BO3AYXe M BOJE DAHBI YHCIEHHBIE 3HAYCHHS JIOKAIHHOLO YHCNA
Hyccenera u nokanshoro yucna Illepsyna. HaiineHo, 4To TensioBas cxopocTh NOKAJLHOIO TENIO- M
MacConcpenoca Ha NOBEPXHOCTH BO3pAacTaer, eciM NoAbéMHas CHna, obycnoBiensas xuddysueit
MacChl, HAnpaB/ieHa B CTOPOHY NGHCTBHA nOABEMHOM CHb, ofycrnosnenHoil nudodysuedl Tenna, u
YMCHLUWIACTCA, €CIH ITH CHIIbI NPOTHBONONOKHO HanpaBnensl. OBpatHoe pamsiHue Habmonaercs z
CIIy4ae, €CHM TENnnOBaA MOABEMHAS CHIZ HPOTHBONONOKHA TEYEHHIO. Kpome Toro maiiaeno, uro
COBMECTHOE BIIMAHHE MONBEMHEIX CHI Ha CKOPOCTH TEILIO- H MAcCONEPEHOCA Ha MOBEPXHOCTH YMEHb-
LIACTCA MO MEpe YBEAWYCHHA yriia HaknoHa. TlpoBeneno cpasHeHwe pe3yIbTATOB, OJNYUEHHEIX NDH
OAHOPOZHOM NOTOKE TETJ/IAd~MACCHl HA NIOBEPXHOCTH M IPH OIHOPOHON TEMAEPATYPe—KOHICHTPALMH
MOTOKa Ha CTEHKE.
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