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Abstract-An analysis is performed to study the heat- and mass-transfer characteristics of mixed convection 
flow along vertical and inclined flat plates under the combined buoyancy effects of thermal and mass 
diffusion. The analysis is for processes in which the diffusion-therm0 and thermo-diffusion effects as well as 
the interfacial velocities due to mass diffusion are negligibly small. The plate is either maintained at a uniform 
temperature/concentration or subjected to a uniform heat/mass flux. Numerical results for the local Nusselt 
number and the local Sherwood number are presented for diffusion ofcommon species into air and water. In 
general, it has been found that for the thermally assisting flow, the local surface heat- and mass-transfer rates 
are further enhanced when the buoyancy force from mass diffusion assists the thermal buoyancy force, but 
are reduced when the two buoyancy forces oppose each other. These trends are reversed for the thermally 
opposing flow. In addition, the effects of the combined buoyancy forces on the surface heat- and mass- 
transfer rates are found to diminish as the angle of inclination from the vertical increases. A comparison is 
also made between results from the uniform surface heat/mass flux and the uniform wall temperature/ 

concentration. 

NOMENCLATURE 

species, mass fraction or concentration ; 
local friction factor; 
binary diffusion coefficient ; 
reduced stream functions; 
gravitational acceleration; 
thermal Grashof number, 
g/-V,- T,)x3/vZ; 
modified thermal Grashof number, 

gBqwx4/kv2 ; 
Grashof number for mass diffusion, 
g/?‘(C,- C,)x3/v2 ; 
modified Grashof number for mass dif- 
fusion, g/hi,x4/pDv2 ; 
thermal conductivity of the fluid; 
mass flux of the diffusing species ; 
ratio of Grashof numbers, Gr, JGr,,,; 

ratio of modified Grashoi’ numbers, 
crr&lGrL ; 
local Nusselt number, q,x/[( T, - T,)k] ; 

Prandtl number, v/u; 
local surface heat-transfer rate per unit 
area ; 
Reynolds number, u,x/v; 
Schmidt number, v/D; 

local Sherwood number, 
+&PD(C,- C,)] ; 
fluid temperature; 
velocity components in x and y directions ; 
axial and normal coordinates. 

Greek symbols 

a, thermal diffusivity of the fluid; 

B, volumetric coefficient of thermal expan- 

sion, C - (WW,,&~ ; 

volumetric coefficient of expansion with 
mass fraction, [ - (&@C),,,]/p ; 
angle of inclination from vertical; 
boundary-layer thickness ; 
pseudo-similarity variable; 
dimensionless boundary-layer thickness ; 
dimensionless temperature; 
dimensionless mass fraction ; 
dynamic viscosity of the fluid ; 
kinematic viscosity of the fluid; 
thermal buoyancy force parameter, 

1 Gr,,, I cos y/ReZ ; 
density of the fluid; 
shear stress; 
modified dimensionless temperature; 
modified thermal buoyancy parameter, 
1 Grz,,lcos y/Rel’2 ; 
stream function ; 
modified dimensionless mass fraction. 

Subscripts 

W, condition at the wall; 

a, condition at the free stream. 

INTRODUCTION 

THERMAL buoyancy effects on forced convective heat 
transfer over a surface may become important when 
the flow velocity is relatively small and the tempera- 
ture difference between the surface and the ambient 
fluid is large. The thermal buoyancy force effects on 
heat-transfer characteristics of forced convection has 
been studied extensively for various flow configu- 
rations, particularly for forced flow along vertical and 
horizontal surfaces. An account of the studies for these 
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two flow configurations can be found, for example, in 
the references cited in two recent studies on the subject 

[l, 21. In general, it has been found that the buoyancy 
force increases the rate of surface heat transfer when it 

assists the forced flow and decreases the heat-transfer 
rate when it opposes the forced flow. Very recently, 

Mucoglu and Chen [3] have studied the thermal 

buoyancy force effects on forced convection flow along 
inclined surfaces. They found that the effects of buoy- 

ancy forces on the wall shear and surface heat-transfer 
rate diminish as the angle of inclination from the 

vertical increases, for both assisting and opposing 
flows. 

There are many transport processes in industry and 
in the environment in which buoyancy forces arise 

from both thermal and mass diffusion as a result of the 
co-existence of temperature gradients and concen- 
tration differences of dissimilar chemical species. The 

problems of combined buoyancy modes of thermal 

and mass diffusion have been studied rather exten- 

sively for laminar free convection flow along vertical 
and horizontal plates (see, for example [4,5] and the 

references cited therein). The analysis, in general, has 
been based on mass diffusion processes for which very 

low concentration level exists, such that the diffusion- 
therm0 and thermo-diffusion effects, along with the 
interfacial velocities from mass diffusion at the surface, 

are neglected. In their analysis on free convection flows 
for vertical and horizontal plates, Gebhart and Pera 

[4,5] used Boussinesq approximations and presented 
results for air and water for Schmidt numbers of 
practical interest. 

A survey of literature reveals that the combined 
effects of buoyancy forces from thermal and mass 
diffusion on forced convective heat and mass transfer 

have not been studied. Many such problems exist in 
engineering and environmental processes. This has 
motivated the present investigation. In the study, 
attention is directed to forced convection along verti- 
cal and inclined plates for which the plate is either 

maintained at a uniform temperature and concen- 
tration or subjected to a uniform surface heat and mass 
flux. Solutions of the transformed conservation equa- 
tions are obtained by both local nonsimilarity and 
finite difference methods. Numerical results are pre- 
sented for Prandtl numbers of 0.7 and 7 over Schmidt 

numbers ranging from 0.2 to 10 and from 7 to 500, 
respectively. These results cover a range of diffusion 
species of interest, respectively, for air and water. 

ANALYSIS 

Consider a flat plate that is inclined from the vertical 
with an accute angle ‘J, along which a forced flow 
moves parallel to the plate with free stream velocity u,, 

temperature T,, and concentration C,. The forced 

flow is above the plate when y > 0 in the clockwise 
direction and below the plate when y < 0. The plate is 
either maintained at a uniform temperature T, and 
uniform concentration C, or subjected to a uniform 
surface heat flux qW and uniform surface mass flux ti,. 

The streamwise coordinate x is measured from the 
leading edge of the plate and the transverse coordinate 
y is measured normal to the plate in the outward 

direction, for flows both above and below the plate. 
By imposing the assumptions of negligible diffusion- 

therm0 and thermo-diffusion effects, along with the 

Boussinesq approximations, one can write the con- 

servation equations of the laminar boundary layer as 

[61 

au au 1 

u- + L’- = + g/?siny- 
“, 

ax sy ! r7x y 
V-T, Id!: 

(’ I 
+ yp* sin y -~ 

c ?x “l 
(C---C,)dj 

+gPcosy(T-T,t 

(3-l 

(3) 

where the conventional notations are defined in the 
Nomenclature. The first two terms on the RHS of 

equation (2) represent the streamwise pressure gra- 
dients induced by the combined buoyancy forces, with 
the plus and minus signs pertaining, respectively, to 
flows above and below the plate. The third and fourth 
terms denote the buoyancy forces that arise from 
thermal and mass diffusion, with the plus and minus 
signs referring, respectively, to upward and downward 

forced flows. Equations (l)--(4) are subjected to the 
following boundary conditions : 

u = 0, L’ = r,* at .L‘ = 0 

T = T, and C = C, or y,, = -k?7’/?~ 

and tir, = - pD r7C;iy at y = 0 1.5) 

u+u,, T-T,, C.-t<‘, as y-t~r’ 

u = u,, T = T,, C = c‘,, at .X = 0. 

Equation (2) shows that both the buoyancy-induced 
streamwise pressure gradient terms and the buoyancy 
force terms exist for an inclined surface. The relative 
magnitude of these terms, however, depends on the 
angle of inclination, y. As demonstrated in the appen- 
dix of [6], an order of magnitude analysis will lead to 
the result that the buoyancy-induced streamwise pres- 
sure gradient terms can be neglected in comparison 
with the buoyancy force terms if the condition 

is fulfilled. In terms of the dimensionless boundary- 
layer thickness qn (the 17 value for which y = 6). this 
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condition is equivalent to 

tan y cc Rei’2/qd. (7) 

Since vd is about 10 and since the local Reynolds 

f(&O) = 0, f’(5,O) = 0 

q&o) = A(&O) = 1 (16) 

f’(& 00) = 1, e(r, co) = A(& co) = 0 
number, Re, = u,x/v, may range from lo3 to 105, the 
values of Reij2/qa will lie between 3 and 30; that is, 

where the primes stand for partial derivatives with 

tan y c< 3 - 30. Thus, condition (6) or (7) will be valid 
respect to Q, Pr is the Prandtl number, SC is the 

for angies of inclination y << 72” N 88” when the 
Schmidt number, the thermal buoyancy force para- 

buoyancy-induced streamwise pressure gradient terms 
meter t(x) is given by 

are neglected from equation (2). Within the framework and tl = I@,,, /cos y/R& (17) 
of this approximation, the momentum equation (2) 
can be simplified to 

N = B*(C,- C,)/iV, - T,) = Gr,,,lGr,., (18) 

U; + U$ = 4.4/Icosy(T-T,) 

with 

Gr,,, = MT, - T,)x3/v2, 
.._I (19) 

4 gp*cosy(c-cc,) + vs. (8) 

The conservation equations for the problem under 
study can then be described by equations (l), (3)-(5), 
(8), subject to the condition given by equation (6) or 
(7). It is noted here that for y = O”, equation (8) with 
cosy = 1 represents exactly the complete x- 
momentum equation for a vertical plate without any 
approximations. This can also be seen from equation 
(2) by putting y = 0”. To obtain solutions of the 
governing system of equations, these equations are 
first transformed into a dimensionless form, as de- 
scribed in the following. 

Uniform wall temperature/concentration ( Wm/UWC) 

case 

Let the pseudo-simitarity variable 1 and the x- 
dependent dimensionless coordinate t;(x) that repre- 
sents the thermal buoyancy effect be 

‘I = Y(u,lvxYi2, 5 = r(x) (9) 

and introduce the reduced stream function~(~, q), the 
dimensionless temperature tY(g, q), and the concen- 
tration ratio A(& q) as 

Gr,,, = gB*(G - c&3/v2 

denoting the local Grashof numbers for thermal and 
mass diffusion, respectively. 

The quantity 5 is a measure of the thermal buoyancy 
force effect on forced convection and ii is a measure of 
the relative effects between buoyancy forces that arise 
from mass diffusion and thermal diffusion. Since 4 
denotes magnitude, it is noted that the plus and minus 
signs appearing on the LHS of equation (13) pertain to 
thermal buoyancy force assisting the forced flow 
(Gr,,,cos y/Re: >O) and opposing the forced flow 
(Grx,rc~s y/Ref <O), respectively. The buoyancy force 
due to concentration difference assists the thermal 
buoyancy force, i.e. the two buoyancy forces act in the 
same direction, when N>O. On the other hand, they 
act in the opposite directions when N <O. The situ- 
ation in which there is no buoyancy force effect from 
mass diffusion corresponds to N = 0. 

It must be mentioned that in writing the condition 
f(&O)=O in equation (16), the normal velocity at the 
wall u, associated with the mass diffusion process has 
been neglected. This results from the assumption of a 
very low concentration level in the diffusion process. 
The condition for the neglect of u, can be found as 

2 u,x Re, 112 << 1 

@Kv) = (T- ~rd/Vw- TaJ, 

45,rl) = (c-c,Mc,-c,) (11) Of 

where the stream function +5(x, y) satisfies the mass 

(20) 

(21) 
conservation equation (1) with 

when use is made of Pick’s law. 
u = arl/l&J, v = -a$jax. (12) Some of the physical quantities of interest include 

Next, by introducing equations (9)-(12) into equa- 
the Iocai friction factor C,, the local Nusselt number 

tions (8) and (3)-(5), one arrives at the following 
Nu,, and the local Sherwood number Sh,. They are 
defined, respectively, by 

system of equations 

f” + :$“* ~(~~~~) = 5is’aS’,@5-f” I?#?& (13) C++, 
P%l2 

Nu, = -!&Y- 5, 
T,-T, k 

(14) 

(15) By employing the definitions of wall shear stress 
r, = ~(au/dy),=,, along with Fourier’s law qw = 
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-k(aT/ay),=, and Fick’s law i, = -pD(X/~y)Y=O, 
it can be shown that 

C/Rei’* = 2f”(5,0) 

Nu,Re; “’ = - e’(<, 0), 

Sh,Re; liz = - l’(<,O). 

(23) 

(24) 

Uniform surface heat/mass jlux (UHFJUMF) case 
The nonsimilarity variables for this case are 

? = Y(u,lvx)“2, X = x(x) (25) 

and the dimensionless stream function, temperature, 
and concentration are defined by 

F(x, V) = $6, ~Mvw)“~ (26) 

@(x7 ~1 = V-- ~,)Re~‘2/(wlh 

W(X, V) = (C - C,)Re?l(nLxlpD) 
(27) 

Substituting equations (25-(27) into equations (8) 
and (3)-(5), one obtains 

F”’ + $FF” &- x(@ + N*w) 

= $x(F’ aF’/& - F” c?F/a~) (28) 

(If 
pr + $F@’ - ‘iF’@ 

= jx(F’ aqax - w aF/aX) 

co“ 
sc + +Fw’ - +F’w 

(29) 

= ~x(F’ am/ax - d aFlaX) (30) 

F(x,O) = 0, F’(x,O) = 0, 

W(&O) = w’(x,O) = - 1 (31) 

F’(X, c0) = 1, 0(x, cc) = w(x, co) = 0 

where the thermal buoyancy parameter x has the 
expression 

x = ( Gr:,, 1~0s y/Re:” (32) 

and the quantity 

N* = (%P*l@)l(q,Blk) = Cr~.,lGr~,l (33) 

measures the relative effect of buoyancy forces between 
mass and thermal diffusion. The modified local Gra- 
shof numbers for thermal and mass diffusion are given, 
respectively, by 

Grz,, = gfiq,,,x4/kv2’ 

Gr$ = g/?*+,,x4/pDv2. 
(34) 

The plus and minus signs appearing in front of x on the 
LHS of equation (28) refer, respectively, to thermal 
buoyancy assisting (Gr$ cos y/Rell’ > 0) and oppos- 

ing (Gr$ cos y JRezl’ < 0) the forced flow. There is no 
buoyancy effect from mass diffusion when N* = 0. 
Both thermal buoyancy force and buoyancy force due 
to concentration difference act in the same direction 
when N* > 0, whereas they act in the opposite direc- 
tions when N* < 0. 

As in the case of uniform wall temperature ana 
uniform wall concentration, the interfacial velocity at 
the wall, II,, due to mass diffusion process has been 
neglected in arriving at the condition F(x,O) = 0 in 
equation (31). This approximation is valid when the 
condition 

is fulfilled. 
The local friction factor, the local Nusselt number, 

and the local Sherwood number as defined by equation 
(22) now have the expressions 

CfRe:j2 = 2F”(l,O) (36) 

Nu,Re; I” = l/@(x, 01, 

Sh,Re; ‘I2 = l/&.0). 
(37) 

Comparisons between UWT/UWC and UHFjUMF 
cases 

A direct comparison of the local Nusselt numbers 
between the uniform wall temperature/concentration 
(UWT/UWC) case and the uniform surface heat/mass 
flux (UHF/UMF) case is of practical interest. This will 
be done later when the numerical results are presented. 
To facilitate such a comparison, it is necessary to 
define an equivalent thermal buoyancy force para- 
meter 5, for the UHF case in terms of the local wall 
temperature T,(x) such that 

5, = 1 (Gr.A / ~0s ‘i!Rd (38) 

where 

and 

(Gr,,& = g/V,(x) - ‘f’,Ix31v2 (39) 

T,(x) - T, = (q,x/k)Re; 1’2Q(x, 0) (40) 

from the Q expression in equation (27). Substituting 
equation (40) into equation (38) and making use of 
equation (32), one obtains 

5, = XQ(X> 0). (41) 

For 5 = x@(J,O), one can find the Nusselt number 
ratio between the UHF and UWT cases by employing 
the Nu, expressions in equations (24) and (37) as 

(Nu,)un~/(Nu,)uw~ = - I/[CD(X, O)@(r, 0)i. (42) 

Similarly, one can determine the Sherwood number 
ratio by defining an equivalent buoyancy force para- 
meter due to mass diffusion for the uniform surface 
mass flux (UMF) case in terms of the local wall mass 
concentration C,(x) as 

where 

5,,, = I(Gr,,,),)cos riRe: = N5, (43) 

and 

(Gr,,,), = sB*CC,(x) - C,Ix31v2 (44) 

C,(x) - C, = k,(x/pD)Re; 1'2w(x,0) (45) 
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from equation (27). Substitution of equation (45) into 
equation (43) along with the use of equation (32) 
results in 

L,, = N*P(&O) (46) 

For 5, = N*pzo(~,O), one finds from the Sh, ex- 
pressions in equations (24) and (37) that 

(S~,)“,,l(S~X)uwc = - l/[W(X, 0)X(5, Ql. (47) 

Since cD(x, 0) and w(x, 0) depend on N*, and since 8’ 
(<,O) and X(5,0) depend on N, a relationship between 
N* and N needs to be determined before the (Nu,)uHF/ 

(NUJUWT ratio or the (Sh,),,,/(ShJuwc ratio can be 
evaluated. This relationship can be determined from 
equations (41), (43), and (46) as 

N*IN = @(I, 0)/0(x, 0) (48) 

when 5 = 5,. In addition, it can be seen that equation 
(46) reduces to equation (41). When SC = Pr, one can 
observe from equations (29) and (30) that @(x,0) = o 
(x,0). This leads to N* = N from equation (48). In the 
same manner, a comparison between equations (14) 
and (1.5) shows that X(&O) = 0’(&0) when SC = Pr. It 
can therefore be concluded that the (Sh,),,,/(Sh,),,c 
ratio is exactly identical to the (Nu,),,,/(Nu,),,, 
ratio when SC = Pr and hence N* = N under the 
equivalent buoyancy force parameter r = 4,. 

NUMERICAL SOLUTIONS 

Equations (13)-(15) for the uniform wall 
temperature/concentration (UWT/UWC) case and 
(28)-(30) for the uniform surface heat/mass flux 
(UHF/UMF) case are partial differential equations 
that are coupled, respectively, through the functionsf, 
8,1 and F, @, w for the respective parametric values of 
N, Pr, SC, and N*, Pr, SC. In the present investigation, 
these equations subject to their respective boundary 
conditions, equations (16) and (31), were solved either 
by the local nonsimilarity method (see, for example, 
[2,3,7]) or by a finite-difference method similar to, but 
modified from that given in [8]. The former method 
was used in the UWT/UWC case for Pr = 0.7 and the 
latter method in the UWT/UWC case for Pr = 7 and 
in the UHF/UMF case for both Pr = 0.7 and 7. In the 
local nonsimilarity method, the solutions were trun- 
cated at the second level, because it has been estab- 
lished from previous studies that this level provides 
results that are very accurate for all practical purposes. 
In the present study, the resulting equations were 
solved by the Runge-Kutta integration scheme, along 
with the Newton-Raphson shooting method to refine 
the initial values at q = 0 until the conditions at the 
edge of the boundary layers (i.e. at q = qa) were 
satisfied simultaneously within a tolerance of 10es or 
smaller. In the computations, the maximum ‘la values 
ranged from 8 to 15 as the Schmidt number decreased 
from 10 to 0.2. The step size Aq was varied from 0.02 for 
0 I q I 4 to 0.04 for u > 4, which was found to be 
adequate for providing accurate numerical results. 

For the case of Pr = 7 (i.e. diffusion of species into 

water), the Schmidt numbers of practical interest lie 
about 500 and the mass-fraction boundary-layer 
thickness is very small (Q < 1) as compared to the flow 
and thermal boundary-layer thicknesses. Because of 
the high Schmidt numbers involved, the numerical 
integration solution becomes difficult to obtain and 
time consuming. It was then decided to solve the 
system of equations (13~(16) for the case. of UWT/ 
UWC with Pr = 7 and the system of equations (28)- 
(30) for the case of UHF/UMF with Pr = 0.7 and 7 by 
a finite-difference method. This solution procedure is 
well documented and can be found, for example, in [8]. 
In this method, an ‘la value of 10 was found to be 
sufficient for all Schmidt numbers ranging from 7 to 
500 and a step size of 0.02 was sufficient for SC = 7. 
However, the step size for SC = 100 and 500 had to be 
varied from 0.005 for 0 I r] I 1 to 0.020 for 1 2 q I 5 
to 0.040 for 5 I r] < 10 for the UWTjUWC case and 
varied from 0.002 for 0 I 9 I 0.5 to 0.02 for 
0.5 I q < 5 to 0.04 for 5 I q I 10 for the UHF/UMF 
case. This is because a very small step size is required 
inside the mass-fraction boundary layer (q < 1) in 
order to provide accurate numerical results. On the 
other hand, a step size of At = 0.25 or Ax = 0.2 was 
found to be adequate for the < or x variable. 

In the computations for the UWT/UWC case, the 
values of Gr,,, cos y/Rei ranged from - 0.5 to 2.0 and 
the N values from - 1.0 to 2.0 for both Pr = 0.7 and 7. 
For the UHF/UMF case, the values of Gr$,,cos y/ 
Rel” ranged from - 0.5 to 2 and the N* values ranged 
from - 1.0 to 2.0. The Schmidt number range for 
Pr = 0.7 covers diffusion of gases or vapors into air, 
such as hydrogen (SC = 0.22), water vapor (0.60), 
ammonia (0.78), carbon dioxide (0.94), methanol 
(0.97), ethyl alcohol (1.30), benzene (1.76), ethyl ben- 
zene (2.01), and naphthalene (2.57). The Schmidt 
number of 500 for Pr = 7 covers closely the diffusion 
into water of ammonia (SC = 455), carbon dioxide 
(453), nitrogen (468), sulfur dioxide (523), methanol 
(556), sodium chloride (580), and chlorine (617). 

RESULTS AND DISCUSSION 

The variations of the local Nusselt number Nu, and 
the local Sherwood number Sh, with the thermal 
buoyancy force parameter Gr,,,cos y/Rez for the uni- 
form wall temperature/concentration (UWT/UWC) 
case are shown, respectively, in Figs. 1 and 2 for 
Pr = 0.7, with values of N ranging from - 1.0 to 2.0 
and Schmidt numbers from 0.2 to 10. The correspond- 
ing results for Pr = 7 are shown, respectively, in Figs. 3 
and 4 with N values from - 1.0 to 2.0 and Schmidt 
numbers of 7, 100 and 500. Similar graphs for the 
uniform surface heat/mass flux (UHF/UMF) case are 
plotted against the thermal buoyancy force parameter 
Gr:, cos yfRel12, respectively, in Figs. 5 and 6 for 
Pr = 0.7, with N* values from - 1.0 to 2.0 and Schmidt 
numbers from 0.6 to 1.0, and in Figs. 7 and 8 for Pr = 7, 
with N* values of - 1.0 to 2.0 and SC values of 7, 100 
and 500. These figures for Pr = 0.7 then show the 
results for diffusion of some typical gases or vapors into 
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FE. 1. Local Nusselt number results for uniform wall 
temperature/concentration. Pr = 0.7. 

thuds with Pr=0.7 (such as air) and those for Pr=7 
illustrate the results for diffusion of some typical 

species into fluids with Pr = 7 (such as water). To 

conserve space, the results for the local friction factor 
are not illustrated. As mentioned earlier, the results for 
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I .4 

: 
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FIG. 2. Local Sherwood number results for uniform wall 
temperature/concentration, Pr = 0.7. 
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&5 
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FK;. 3. Local Nusselt number results for uniform wall 
temperature/concentration, Pr = 7. 

the UWT/UWC case with Pr = 0.7 were obtained 
from solutions by the local nonsimilarity method, 
whereas those for the UWTjUWC case with Pr = 7 
and the UHFjUMF case with Pr = 0.7 and 7 were 

from the finite-difference method of solution. For the 
UWT/UWC case with Pr = 0.7, the results from the 
finite-difference solution for N = 0 are also shown in 

Fig. 1 for comparisons with those from the local 

01 I _L--- L- __.~~~_.__i_ i 
-0.5 0 0.5 1.0 21.5 2.0 

Grx + cosy/Re, 
, 

FK;. 4. Local Sherwood number results for uniform wall 
temperature/concentration. Pr = 7. 
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N” UHF/UMF SC 

0 0.5 1.0 1.5 2.0 

Srx:+ 5/2 
cosy/Re, 
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I x 

B 
x 

z’ 

FIG. 5. Local Nusselt number results for uniform surface 
heat/mass flux, Pr = 0.7. 

nonsimilarity solution. A close agreement between the 
two sets of results serves to verify the accuracy of the 
local nonsimilarity method of solution. 

To explain the Nu, and Sh, results shown in Figs. 
l-4 for the UWT/UWC case and in Figs. 5-8 for the 
UHF/UMF case, attention is first directed to the 
curves for N = 0 and N* = 0; that is, to the curves for 
the case in which the buoyancy force arises solely from 
the temperature differences in the fluid and there exists 
no buoyancy force effect from concentration differ- 
ences. It is seen from these figures that for N = 0 (or 

-0.5 0 0.5 I.0 1.5 2.0 

Sr:.+ 5/2 
cosy/Re, 

FIG. 6. Local Sherwood number results for uniform surface 
heat/mass flux, Pr = 0.7. 
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of/5 lb& I I I 
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I 

FIG. 7. Local Nusselt number results for uniform surface 
heat/mass flux, Pr = 7. 

N* = 0) the local Nusselt number and the local 
Sherwood number increase with increasing thermal 
buoyancy force intensity for assisting flow (Gr._ cos y/ 
Rez > 0 or Gr:,cos y/Rez” > 0) and decrease with 
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I 
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FIG. 8. Local Sherwood number results for uniform surface 
heat/mass flux, Pr = 7. 
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increasing thermal buoyancy force intensity for oppos- 
ing flow (Gr,,, cos jt/Re: < 0 or Gr:,, cos y/Re:12 -C 0). 
When N > 0 (or N* > 0), that is, when the buoyancy 

force from mass diffusion acts in the same direction as 
the thermal buoyancy force, these quantities are 

further enhanced or reduced as compared to their 
respective values for N = 0 (or N* = 0), depending on 

whether the thermal buoyancy force assists or opposes 
the forced flow. These trends are reversed when N < 0 

(or N* < 0), that is, when the buoyancy force from 
mass diffusion acts in the opposite direction to the 
thermal buoyancy force. In addition, it is seen that for 

N > 0 (or N* > 0), the surface heat- and mass-transfer 
rates increase and decrease with increasing thermal 
buoyancy force, respectively, for thermally assisting 

and opposing flows. However, for N = - 1.0 (or 
N* = - l.O), while the same trends are seen to prevail 
when SC > Pr, they are reversed when SC < Pr. This 

bahavior is due to the net buoyancy force effect from 
thermal and mass diffusion and needs further 

explanation. 

From Figs. l-4 one can see that the local Nusselt 
and Sherwood numbers are independent of Gr,,, cos y/ 
Re: when N = - 1.0 and SC = Pr. These quantities are 
also independent of Gr$ cos ylRe:‘l when N* = - 1.0 
and SC = Pr (see Figs. 5-8). This is because the 0 and 1. 
or @ and w solutions are identical when SC = Pr [see 
equations (14) and (15) or (29) and (30)] and, in 
addition, with N = - 1.0 the term kt(O + N1) in 
equation (13) or with N* = - 1 the term k x(@ + 

N*w)in equation (28) becomes zero, signifying that the 
combined net buoyancy force effect from thermal and 

mass diffusion is zero, that is, the two buoyancy forces 
are of the same intensity but are exactly opposite in 
their directions of action. The resulting situation is 

exactly identical to that for pure forced convection. 
When SC < Pr and N = - 1.0 in the uniform wail 

temperature/concentration case, such as SC = 0.6, 
Pr = 0.7, and N = - 1.0 in Figs. 1 and 2, the values of 

Nu, and Sh, decrease with increasing values of 
Gr,,t cos y/Re: > 0 and increase with increasing value 

of Gr,.l cos y/Re: < 0, because the term (0 + Ni.) 
becomes negative. In fact, these trends will exist for any 
combination of N < 0, SC, and Pr as long as (0 + NL) 
remains negative. This same behavior is also true for 
the uniform surface heat/mass flux case when SC < Pr 
and N* = - 1.0. 

The behaviors of Nu, and Sh, with the changes in N 
and Gr, , cos -J/Re?j (or N* and Gr,*,, cos yiRez’2) are in 
confor&ity with the physical situations, as is to be 

expected. For both N > 0 and N < 0 (or N* > 0 and 
N* < 0), larger departures of the Nu, values from 
those of N = 0 (or N* = 0) are associated with smaller 
values of the Schmidt number, for both positive and 
negative values of Gr,,, cos y/Rez (or Gr:., cos yi:Re.: ‘2 ). 
The reason for this is that a diffusing species with a 
smaller Schmidt number has a larger binary diffusion 
coefficient which will then exert a larger effect on the 
flow and thermal fields. On the other hand, larger 
values of Sherwood number are associated with larger 

values of the Schmidt numbers. This is because an 
increase in the Schmidt number implies a decrease in 
the binary diffusion coefficient for a given fluid and a 

decrease in the concentration boundary-layer thick- 
ness relative to the flow boundary-layer thickness. For 

SC > 1, the concentration boundary-layer thickness 
becomes smaller than the flow boundary-layer thick- 
ness, thus resulting in a larger mass fraction gradient at 
the wall. As the Schmidt number increases further. the 

mass fraction gradient at the wall (see Fig. 11) and 
hence the Sherwood number increases accordingly. 

Although not illustrated, it is stated here that the 
behavior of the local friction factor results parallels 
that of the local Nusselt number results. 

The Nu, and Sh, results presented in Figs. 1 X 
reduce to those for a vertical plate when the angle uf 

inclination from the vertical 7 1s zero. Since cinclined p,a,e 

tverticatplate = Xinclinedplale!iXrert,calpl.lle = US 7, it can be 
seen that the thermal buoyancy force effects on h'u, 

and Sh, diminish as 7 increases. Thus, to induce the 
same effect on the Nu, and Sh, at a given angle 7 > U as 
at ;I = 0, it is necessary to increase the thermal 

buoyancy force intensity Gr,,,;!Re: or GrfJ,.!Rt$’ hy a 
factor of l/cosy. 

Representative velocity, temperature, and mass- 
fraction profiles are illustrated only for the uniform 

wall temperature/concentration case with Pr = 0.7. 
respectively, in Figs. 9--l 1. To preserve the clarity of 
the figures, curves are shown only for Gr,,,cos ;J# 

Y(U@ /VX) 
l/2 

FIG. 9. Representative velocity profiles for uniform wall 
temperature/concentration, Pr = 0.7. 
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(ALL Sc,O) ALL N ------ -I 
0.5 

FIG. 10. Representative temperature profiles for uniform wall temperature/concentration, Pr = 0.7. 

Ref = 0, 2 and N = - 1.0, 0, 2.0 for several typical 
Schmidt numbers. The curves for Gr,,, cos y/Rez = 0 
correspond to pure forced convection, so are the 
curves for N = - 1.0 with SC = Pr, as was explained in 
the discussion of the Nu, and Sh, results. The velocity 
profiles (Fig. 9) show that if the combined effects of 
Gr,,, cos y/Rez and N result in a net buoyancy force 
that assists the forced flow, the velocity gradient at the 
wall increases beyond that for pure forced convection. 
This net effect is seen to increase with increasing value 
of N for a given Schmidt number and with decreasing 
Schmidt number for a given N value, particularly when 
N is large and SC is small, as evidenced from an 
accompanying rapid increase in the velocity near the 
wall and an overshooting ofthe velocity beyond its free 
stream value inside the flow boundary layer. On the 
other hand, when the net effect of thermal and 
concentration buoyancy forces contributes to an op- 
posing flow, both the velocity and the velocity gradient 

at the wall are reduced as compared to those for pure 
forced convection (see the curve for SC = 0.6, 
Gr,,, cos y/Re: = 2, N = - 1.0 in Fig. 9). 

With respect to the temperature profiles (Fig. lo), 
the temperature gradient at the wall is seen to increase 
as N increases or as SC decreases when the net 
buoyancy force effect of thermal and mass diffusion 
results in an assisting flow. The opposite trend is 
observed when the net buoyancy force effect gives rise 
to an opposing flow (see the curve for SC = 0.6, 
N = - 1.0, and Gr,,, cos y/Re: = 2 in Fig. 10). Thus, 
the effects of Gr,,, cos y/Rez, N, and SC on the thermal 
field are similar to those on the flow field. Although not 
shown, it is noted here that fluids with Pr = 7 provide, 
under the same values of N, SC, and Gr,,, cos y/Re& 
larger temperature gradients at the wall than fluids 
with Pr = 0.7. The mass-fraction profiles (Fig. 11) 
exhibit trends that are somewhat different from those 
of the velocity and temperature profiles. While the 

FIG. 11. Representative mass fraction profiles for uniform wall temperature/concentration, Pr = 0.7. 
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concentration gradient at the wall is seen to increase 

with increasing value of N when the net buoyancy 
force effect is to assist the forced flow, a larger increase 

is accompanied by a larger Schmidt number. This 
behavior, similar to the effect of Prandtl number on the 
temperature profiles, was explained when the Sher- 
wood number results were discussed. 

Finally, the local Nusselt numbers between the 
U~F/UMF case and the UWT/~_iW~ case are com- 
pared in Fig. 12, in which the (~~~)“~,~/(~~.~)~w, ratio 
is plotted against the equivalent buoyancy force 
parameter (Gr,,Je cos y/Re?j. Curves are shown only 
for the cases of SC = Pr and N* = N. It can be seen 
from the figure that for an equivalent thermal buoy- 
ancy force parameter as defined by equation (41), the 
Nusselt number ratio is larger than one: that is, the 
Nuss& numbers for the uniform surface heat/mass flux 
case are larger than those for the uniform wall 
tem~rature~concentration case. In addition, it is seen 
that the Nusselt number ratio for Pr = SC = 0.7 is 
larger than that for Pr = SC = 7, and that this ratio 
decreases with an increasing value of N for a given 
buoyancy force intensity. Furthermore, the (Nu,),,, 

(N~,)uwT ratios decrease as (Gr,~& cos y/Rri increases 
and become essentially constant for large values of 
(Gr,,,), cos y,fRe:. For the case of N = N* = - 1.0 and 
Pr = SC, the Nusselt number ratios do not depend on 
(Gr,,& cos y/Rez because of the zero net buoyancy 
force under these conditions. The curves in Fig. 12 are 
also applicable exactly as the Sherwood number ratio, 

Fr ,Sc ! _.-...--- 07 
- 7 I 

I ! 

1 / i 

is,c&_...-__--G-._~ ~. _i 
0 0.5 . I 5 2.0 

(Gr x,+)e cosy/Re; 

Frr;. 12. The Nusseit number ratio (~u~)~~~J(N~*)~;w~ and 
the Sherwood number ratio (S~~}u~~/(S~~)~~~~ for SC = Pr 

and N* = N. 

c%),,,/cw,w0 because they are for Se = Pr and 
N* = N under < = <,, as was explained in the Analysis 
section. 

CONCI.CSlO\S 

From the present study of mixed convection on 
vertical and inclined plates with combined buoyancy 
force effects of thermal and mass diffusion, it has been 
found in general that for both uniform wall 
temperature/concentration and uniform surface heat; 
mass flux cases, the local friction factor, the local 
Nusselt number, and the local Sherwood number 
increase when the net effect of the combined buoyancy 
forces assists the forced flow and decrease when the net 
effect opposes the forced flow. The combined buoy- 
ancy force effects on these three quantities are en- 
hanced when the buoyancy force from mass diffusion 
assists the thermal buoyancy force and are reduced 
when they oppose each other. In addition, a smaller 
Schmidt number is found to exert a larger effect on the 
friction factor and the Nusselt number, whereas a larger 
Schmidt number is responsible for a larger effect on the 
Sherwood number. The buoyancy force effect dimin- 
ishes as the angle of inclination from the vertical 
increases. In addition, combined heat and mass trans- 
fer under uniform surface heat/mass flux provides 
larger local Nusselt and Sherwood numbers than the 
combined transfer under uniform wall temperature,’ 
concentration. 
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TRANSFERT DE CHALEUR ET DE MASSE EN CONVECTION 
MIXTE LE LONG DE PLAQUES VERTICALES OU INCLINEES 

R&m& - On Ctudie les caract&istiques du transfert de chaleur et de masse en ~onv~tion mixte le long de 
plaques planes verticales ou inclinQes, sous l’influence des diffusions dechaleur et de masse. On suppose que la 
thermodiffusion ainsi que les vitesses interfaciales sent n6gligeables. La plaque est maintenue soit B 
tem~rature ou con~ntration uniforme soit encore & flux massique ou thermique uniforme. On pr&sente des 
rksultats numbiques pour le nombre de Nusselt local et le nombre de Sherwood local pour la diffusion 
d’esp&ces courantes dans l’air et l’eau. On trouve que les flux surfacicues locaux sont augmentis lorsque les 
forces dues &la diffusion massique assistentcelles dues ;iladiffusior thermique,mais sontrkduits quand ces 
forces s'opposent. De plus, les effets combines des forces sur les flux surfaciques de masse et de chaleur 
di&nuent lorsque l’angle d’inclinaison par rapport B la verticale augmentetlt. On fait une comparaison entre 
Iesr~sultatsrelatjfsauflux uniformede~haleuroudemasseetceux relatifs,~l~Item~ratureouconcentration 

uniforme. 

GLElCHZEITIGER WdiRME- UND STOFFOBERGANG BE1 
GEMISCHTER KONVEKTION LXNGS VERTIKALER UND GENEIGTER 

PLATTEN 

Zusammenfasriung-Eine Analyse wird durchgefiihrt, urn die Eigenschaften des WIrme- und Stofftibergangs 
von gemischter Konvektion~tr6mung entlang vertikaler und geneigter ebener Platten unter den gleichzeiti- 
gen Einfliissen der Auftriebskrgfte von Wgrmeleitung und Diffusion zu untersuchen. Die Analyse gilt Eir 
Prozesse, bei denen sowohl die Diffusionsthermo- und Thermodiffusionseffekte als such die GrenzflHchenge- 
schwindigkeiten infolge der Stoffdiffusion vernachllissigbar klein sind. Die Platte wird entweder auf 
gleichmll3iger Temperatur bzw. Konzentration gehalten oder einer gleichm%igen Wlrme- bzw. Massen- 
stromdichte unterworfen. ZahlenmIDige Ergebnisse fiir die ijrtliche Nusselt-Zahl und die ortliche Sherwood- 
Zahl werden fiir die Diffusion bekannter Stoffe in Luft und Wasser angegeben. Ganz allgemein wurde 
gefunden, daI3 bei thermisch unterst6tzter Striimung die Grtlichen Wzrme- und Stoffiibergangswerte an der 
Wand weiter vergr%rt werden, wenn die Auftriebskraft infolge von Stoffdiffusion die therm&he 
Auftriebskraft verstlrkt, jedoch reduziert werden, wenn die Auftriebskrgfte entgegengerichtet sind. Diese 
Trends werden bei thermisch behinderter Striimung umgekehrt. AuBerdem wurde festgestellt, da8 sich die 
Wirkungen der kombinierten Auftriebskrifte auf die Wtime bzw. Stoffibergangswerte an der Ober!liiche 
mit zunehmendem Neigungswinkel, bezogen auf die der Vertikalen, vern&d&. Es werden such die 
Ergebnisse fiir gleichfhrmige W&me- bzw. Massenstromdichte an der Oberflliche mit denen fiir gleichml& 

ige Temperatur bzw. Konzentration verglichen. 

COBMECTHbIZi TEl-IJIO- I4 MACCOIIEPEHOC IIPM CMEIl.IAHHOI;i KOHBEKMHM HA 
BE~~KA~bHblX HAKJIOHHbIX HJIACTMHAX 

AHHOT~UIUI-- npOBeJIeH aHWIH3 TeIIJIO- Ii MaCC006MeHHbIX XapaKTepIICTWC KOHBeKTHBHOrO Te'IeHWR 
BAOJIb IIepTHKanbHbIX Ii HaKnOHHbIX IInOCXAX RnaCTNH IIpH COBMeCTHOM AeiiCTBEIII IIOAtiMHbIX CHJI, 
~YCAOBneHHbIX ASi#l@y3Ifeii TeIIna Ii MaCCM. Anann BbEIOnHeH ,!(nS IIf.WQZCOB, B KOTOpbIX AH+ 

!$y3HOHHbItiTepM03@a)eXTH TepMoAH@+y3HOHHbIti 3++eKT,a TaKXGZ BenIiWHaCKOpOCTBHa IInaCTHHe, 
O6yCJIOBneHHaaAH~~y3ISe8 MaCCbI,upeHe6peXCIfMOManJLfkIaCTHHa IinU HaXOAllTCIi IlpHOAHOpOAHOii 
~M~e~Ty~--~KOH4eHTpart~~Hn~uOABepXeHaAeiicTB~~OAHO~AHOrOTeunOBOrO-~~aCCOBO~OuOTOKa. 
Ana LIH@$y3HN 06bl~m.r~ BeIUeCTB B BO3AyXe Ii BOAe AaHbI YRCneHHbIe 3HaSeHHa nOKanbHOr0 wcna 
HyccenbTa fi noxanbHor0 wcna Ulepeyna. HalAeao, YTO TennoBaa cxopocTb noKanbHor0 renno- Ii 
MaCCOIIePeHoCa Ha IIOBepXHOCTIi BO3&'laCTaf!T, ecIlIi IIOAZ&Haff CHJIa, oEiycnoBneHHa% AH$a$y3Heii 
MaCCbI, HaIIpaBneHa B CTOpOHy AeilCTBHfl I'lOAL&MHOti CIiJlbI, 06yCJIOBneHHO8 A&ibp@ysHeti Tenna, )I 
yMeHbmaeTCfl, eCnIi 3TH CHJIbI IIpOTIIBOuOJIOXHO HaIlpaBneHbI. 06paTHOe BnHXH1Ie Ha6nIOAaeTCa a 
cnyqae, ecnw munoaaa uoA~MHaa cIu2a upoTnao~ono~Ha Te'fefwm KpoMe TOrO HaiiAeHo, 'fTo 
COBMeCTHOe BnHRHNe IIOAtiMHbIX WI Ha CKOpOCTb TeIInO- Ii MaCCOIIel_WHOCa Ha IIOBepXHOCTH yMeHb- 
ILIaeTca no Mepe yBenW4eWIX yrna HaKnOHa. npOaeAeH0 CpaBHeHIie &EsynbTaTOB, IIOnyVeHHbIX IIpII 
OAHOPOAHOM 8'IoToKe Teuna-MacC~ Ha uoaepXa~Tff B u.pII OAHOpOAHO~ ~Mue~Ty~-KOHueHT~uH~ 

IIOTOKB Ha CTeHKe. 


